Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
نویسندگان
چکیده
منابع مشابه
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring ...
متن کاملMultivariate image segmentation with cluster size insensitive Fuzzy C-means
This paper describes a technique to overcome the sensitivity of fuzzy C-means clustering for unequal cluster sizes in multivariate images. As FCM tends to balance the number of points in each cluster, cluster centres of smaller clusters are drawn to larger adjacent clusters. In order to overcome this, a modified version of FCM, called Conditional FCM, is used to balance the different sized clus...
متن کاملSubtractive Fuzzy C-means Clustering Approach
To identify T-S models, this paper presents a so-called “subtractive fuzzy C-means clustering” approach, in which the results of subtractive clustering are applied to initialize clustering centers and the number of rules in order to perform adaptive clustering. This method not only regulates the division of fuzzy inference system input and output space and determines the relative member functio...
متن کاملA new initialization method for the Fuzzy C-Means Algorithm using Fuzzy Subtractive Clustering
Fuzzy C-means (FCM) is a popular algorithm using the partitioning approach to solve problems in data clustering. A drawback to FCM, however, is that it requires the number of clusters and the clustering partition matrix to be set a priori. Typically, the former is set by the user and the latter is initialized randomly. This approach may cause the algorithm get stuck in a local optimum because F...
متن کاملTool Condition Monitoring Using the TSK Fuzzy Approach Based on Subtractive Clustering Method
This paper presents a tool condition monitoring approach using Takagi-Sugeno-Kang (TSK) fuzzy logic incorporating a subtractive clustering method. The experimental results show its effectiveness and satisfactory comparisons with several other artificial intelligence methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2014
ISSN: 1424-8220
DOI: 10.3390/s141018960